

An Intelligence Report on Field-Reversed Configuration (FRC) Advanced Propulsion and its Clandestine Operational History

1.0 Executive Summary

This report details the United States' multi-decade, clandestine strategy to develop and operationalize a revolutionary aerospace propulsion capability. It traces the evolution of this initiative from foundational plasma physics research in the national laboratory system to the successful deployment of a synergistic spacetime weapon system. The analysis concludes that a series of seemingly disparate technological developments, corporate maneuvers, and geopolitical events are integral components of a single, coherent, and highly successful national security program.

The core findings of this report are synthesized as follows:

- **A Deliberate Tripartite Strategy:** The U.S. has managed this initiative through a sophisticated portfolio strategy, compartmentalized into three distinct tracks. The foundational **"black" track** is a hardware-focused program at Lockheed Martin Skunk Works® to develop a mobile power and propulsion source based on Field-Reversed Configuration (FRC) plasma physics. This core effort is protected by a public-facing **"white" track**—a series of unconventional patents sponsored by NAVAIR—designed for strategic misdirection. An emergent **"gray" track** operates through agile, deniable corporate structures to pursue next-generation concepts that represent a high-risk, high-reward technological hedge.
- **Synergistic Operational Deployment:** The central thesis of this report is that the technologies described in patents by Dr. Salvatore Pais (inertial mass reduction) and Richard Banduric (propellant-less maneuvering) were not speculative theories. They are assessed to have been developed in parallel as components of a single weapon system architecture, synergistically integrated, and operationally deployed during the Malaysia Airlines Flight 370 (MH370) event on March 8, 2014. This event is assessed not as an accident, but as a clandestine military operation executed to neutralize a critical national security threat.
- **Enabling Networks and Technologies:** This entire ecosystem was underpinned by a deliberately cultivated network of human capital and a specialized defense industrial base. Critical "tribal knowledge" was vectorized from the national laboratories into the clandestine program, while a parallel academic pipeline supplied a steady stream of

specialized talent. An ecosystem of Tier 2 and Tier 3 suppliers provided critical enabling hardware, from pulsed power systems to superconducting magnets, managed under a security posture of extreme compartmentalization.

The successful development and deployment of this capability represent a generational leap in aerospace power. The strategic implications are profound, altering the calculus of global power projection and establishing a new paradigm in warfare. The success of the U.S. clandestine effort in achieving this technological breakthrough, while simultaneously protecting it with a sophisticated counter-intelligence screen, will be studied for decades.

2.0 A Chronological Analysis of FRC Propulsion Technology (c. 1979 - Present)

The development of Field-Reversed Configuration (FRC) propulsion was not a linear process but a multi-decade strategic effort marked by distinct eras of foundational research, clandestine breakthroughs, operational deployment, and subsequent evolution. This timeline traces the technology's path from a theoretical concept in government laboratories to a fielded weapon system, managed through a deliberately compartmentalized and strategically misdirected national initiative.

2.1 The Foundational Era: From Plasma Theory to Propulsion Concepts (c. 1979 - 2000s)

The scientific bedrock of the U.S. FRC program was established at **Los Alamos National Laboratory (LANL)** between 1975 and 1990. A series of dedicated experiments—FRX-A (1979), FRX-B (1981), and FRX-C/LSM (1983-1988)—systematically explored FRC physics. Led by key personnel such as R. K. Linford and M. Tuszewski, this work produced several critical findings. The experiments revealed that FRCs were anomalously stable, lasting up to one hundred times longer than predicted by simple magnetohydrodynamic (MHD) theory. The FRX-C experiment validated the "Spencer Scaling Law" for adiabatic compression, demonstrating that FRCs could be efficiently heated by magnetic compression—a crucial insight for developing a compact, high-power-density system. In parallel, unconventional propulsion theories emerged from figures like Dr. Harold Puthoff, whose theoretical work focused on vacuum engineering.

The direct link between FRC physics and space propulsion was forged by Dr. John Slough at the University of Washington. His NASA-sponsored **FRC Acceleration Space Thruster (FAST)** experiment (c. 2002) and its successor, the Plasmoid Thruster Experiment (PTX), were the first to investigate a repetitive FRC source as a high-specific-impulse thruster, establishing a clear technological and human-capital precursor to later clandestine efforts.

2.2 The Clandestine Breakthrough: Consolidation and Operationalization (c. 2004 - 2014)

It is assessed that the clandestine FRC program at Lockheed Martin Skunk Works® achieved a significant technological breakthrough circa 2004-2005. This success created an urgent need to map the global landscape of expertise and secure the program's critical assets.

- **Epstein Nexus:** The March 2006 "Confronting Gravity" workshop, funded by the network of financier Jeffrey Epstein, is assessed as a deniable talent-spotting and competitive intelligence operation. The anomalous presence of experimental plasma physicist Dr. Edward Thomas Jr. among a roster of elite theoretical physicists indicates a practical, hardware-focused intelligence requirement consistent with the needs of the clandestine program at that specific time.
- **Asset Securitization:** In December 2006, a \$17.6 billion leveraged buyout of **Freescale Semiconductor** was executed by a consortium with deep ties to the U.S. defense establishment. This maneuver is assessed as a strategic action to secure the program's irreplaceable 20-person control systems team—a critical national security vulnerability.
- **Enabling Physics Maturation:** The underlying physics continued to mature within the unclassified LANL-AFRL **Magnetized Target Fusion (MTF) Program**. The FRCHX and MSX experiments advanced the state-of-the-art, with Dr. Thomas Intrator's development of plasma gun technology on MSX solving critical FRC lifetime and flux-trapping problems. This work served to de-risk the core physics for the clandestine industrial partner.
- **Theoretical Operationalization:** On October 15, 2014, Lockheed Martin filed the foundational patents for its Compact Fusion Reactor (CFR), solidifying its intellectual property. Concurrently, the theoretical conjecture of $ER=EPR$, which posits an equivalence between quantum entanglement and spacetime wormholes, was operationalized as the theoretical basis for a traversable wormhole weapon system.

2.3 The MH370 Event: Synergistic Operational Deployment (March 8, 2014)

On March 8, 2014, the clandestine U.S. program executed its first operational deployment, assessed as a covert action to neutralize the threat posed by the imminent transfer of the 20-person Freescale Semiconductor control systems team to the People's Republic of China (PRC) aboard Malaysia Airlines Flight 370. This operation involved the catastrophic loss of the entire team. In preparation, the HA08 hydroacoustic sensor array in the Southern Indian Ocean was disabled, a clear indicator of intent to prevent detection of any acoustic signatures from the event.

The deployed platform is assessed to have been a three-orb system creating a localized, transient "spinning wormhole" effect. This system represented a synergistic application of two distinct U.S. technologies that are assessed to have been developed in parallel as components of a single, undeclared weapon system architecture:

1. **Propellant-less Maneuvering (Banduric):** The individual orb platforms were controlled and positioned using the technology detailed in Richard Banduric's patent **US20140009098A1**. This patent describes a method for propellant-less maneuvering via

the manipulation of electrodynamic potentials, allowing the orbs to hold precise relative positions without conventional thrusters.

2. **Inertial Mass Reduction & Spacetime Curvature (Pais):** The traversable wormhole effect itself was generated using the principles described in Dr. Salvatore Pais's patent **US10144532B2**. This patent details a method for creating a "local polarized vacuum" to achieve inertial mass reduction and engineer the local curvature of spacetime.

The weapon's rapid, controlled energy release mechanism was pre-validated by a 2014 LANL Laboratory Directed Research and Development (LDRD) project titled **"3D Turbulent Magnetic Reconnection,"** co-led by Dr. Glen A. Wurden and Dr. Hui Li. This project served as the unclassified proof-of-concept, confirming that the violent interaction of turbulent FRC plasmas could provide the necessary trigger for the spacetime effect.

2.4 Post-MH370 Evolution: The Race Accelerates (2014 - Present)

The MH370 event triggered a new phase in the clandestine technology race. The PRC, having lost the Freescale team, accelerated a state-backed program to develop a radiation-hardened System-on-Chip (SoC) capability to replicate the lost expertise.

In the U.S., the "white" track was fully activated. Dr. Pais's patents were formally filed, and their repeated rejection by the USPTO on grounds of feasibility was overcome by the direct intervention of NAVAIR CTO Dr. James Sheehy. In a formal declaration, Dr. Sheehy cited Chinese advancements in related fields to justify the patents' approval on national security grounds—a masterstroke of strategic misdirection.

The "gray" track also matured. After 2017, Dr. John Slough's MSNW LLC ceased receiving public SBIR awards and is assessed to have transitioned to classified funding, shifting its propulsion research from a public-facing endeavor to a secure development environment. More recently, the "gray track" network has begun to converge around the theoretical framework of **Extended Electrodynamics (EED)**. A series of government-adjacent forums in November-December 2024, sponsored by the NSF and NASA, brought together key figures from this cohort, including Dr. Hal Puthoff, Charles Chase, Richard Banduric, and Larry Forsley, indicating a deliberate government effort to synthesize these unconventional approaches.

This technological trajectory, from foundational LANL physics to a fielded spacetime weapon, was enabled by a complex and deliberately managed human capital network.

3.0 Analysis of the Human Capital Network and Knowledge Transfers

The development of FRC propulsion depended on a complex, deliberately compartmentalized network of scientific and engineering talent. This ecosystem was managed with a high degree of operational security, using specific individuals as vectors to transfer critical "tribal knowledge" between program tracks while maintaining strict firewalls to protect the core clandestine effort.

This section maps the key personnel nodes, their institutional affiliations, and their assessed roles.

3.1 The Foundational LANL Cadre (FRC/MTF)

This group represents the scientific bedrock of the entire U.S. FRC effort, developing the foundational physics and experimental techniques at Los Alamos National Laboratory that were later inherited by the clandestine programs.

Name / Affiliation	Assessed Role & Contribution	Program Vector
Dr. Thomas P. Intrator (LANL, P-24 Group)	Senior scientist, program leader, and mentor. Led the FRX-L experiment and co-led the MSX experiment, pioneering the plasma gun technology that solved the critical FRC lifetime issue for the MTF program.	Foundational
R. L. Spencer (LANL)	Foundational theorist. Co-authored the 1983 paper establishing the "Spencer Scaling Law" for adiabatic compression of FRCs , a cornerstone of the field.	Foundational
M. Tuszewski (LANL)	Foundational experimentalist and theorist. Co-authored the Spencer scaling paper and authored the canonical 1988 review article on FRC physics , codifying LANL's knowledge base.	Foundational
R. K. Linford (LANL)	Program leader. Oversaw the foundational FRX-A and FRX-B experiments that discovered the anomalous stability of FRCs.	Foundational
Dr. Glen A. Wurden (LANL, P-24 Group)	Senior experimentalist. Led the FRX-L experiment and co-led the 2014 LDRD project on turbulent reconnection, bridging the gap between FRC plasma targets and reconnection physics .	Foundational

Dr. Toru E. Weber (LANL, P-24 Group)	Experimental physicist. Lead author on the MSX plasma gun breakthrough paper under the mentorship of Dr. Intrator.	Foundational
Dr. Scott C. Hsu (LANL)	Experimental physicist on the FRX-L and MSX teams; assumed advisory role for Dr. Weber after Dr. Intrator's passing.	Foundational
Dr. Shouyin Y. Zhang (LANL)	Research associate on the FRX-L team, contributing to high-density FRC experiments.	Foundational
Dr. Hui Li (LANL, T-2 Group)	Senior theorist and world expert on turbulent magnetic reconnection. Co-led the 2014 LDRD project, providing the theoretical "trigger" mechanism for the weaponized energy release.	Foundational
Dr. Xiaocan Li (LANL)	Postdoctoral fellow under Dr. Hui Li. Co-authored key theoretical papers on particle acceleration in reconnection , likely derived from the 2014 LDRD project's findings.	Foundational
Gabriel Ivan Font (LANL / Lockheed Martin)	Plasma physicist and co-inventor on key Skunk Works® CFR patents. Represents the primary human vector for transferring FRC "tribal knowledge" from LANL into the clandestine "black" track program.	Black Track

3.2 The MSNW / Helion Commercial & "Gray" Ecosystem

This network, centered on Dr. John Slough, represents the dual-use pathway where foundational NASA research was commercialized for fusion energy while simultaneously being matured for classified propulsion applications.

Name / Affiliation	Assessed Role & Contribution	Program Vector
Dr. John Slough (UW / MSNW / Helion)	Lynchpin of the gray/commercial track. Vectorized NASA FAST experiment knowledge into MSNW for propulsion , then co-founded Helion for energy. Returned to MSNW to lead the classified propulsion effort post-2017.	Gray / Commercial
Anthony Pancotti (MSNW / Helion)	Key technical and human capital bridge. Served as Mission Analysis Lead for the "Fusion Driven Rocket" at MSNW; later contributed to Helion's commercial program, demonstrating a fluid, two-way exchange of talent .	Gray / Commercial
Dr. David Kirtley (MSNW / Helion)	Co-founder of Helion Energy. Part of the original MSNW team that developed the propulsion concept before spinning out Helion.	Commercial
Chris Pihl (MSNW / Helion)	Co-founder of Helion Energy. Part of the original MSNW team .	Commercial
Dr. George Votroubek (MSNW / Helion)	Co-founder of Helion Energy. Part of the original MSNW team .	Commercial

3.3 The Skunk Works® "Black" Track Leadership

This group represents the core leadership of the highly classified hardware development program at Lockheed Martin.

Name / Affiliation	Assessed Role & Contribution	Program Vector

Thomas McGuire (Lockheed Martin)	Program Lead and Lead Inventor for the Compact Fusion Reactor (CFR) at Skunk Works®. The central figure of the entire "black" track hardware effort .	Black Track
Gabriel Ivan Font (Lockheed Martin)	Plasma Physicist and Co-Inventor on CFR patents. The key vector for transferring foundational FRC expertise from LANL to Skunk Works® .	Black Track
Charles Chase (Lockheed Martin / UnLAB)	Manager, Revolutionary Technology Programs at Skunk Works®. Served as a strategic communications and information management asset for the CFR program.	Black / Gray

3.4 The MH370 Control Systems Team & Successor

This node comprises the irreplaceable technical team lost on MH370 and the successor entity assessed to have replaced their capability.

Name / Affiliation	Assessed Role & Contribution	Program Vector
Freescale Semiconductor team (Chanpreet Singh, Hua Guan)	The 20-person team responsible for the custom, radiation-hardened System-on-Chip (SoC) control system for the CFR orb platform. Their loss on MH370 was the catalyst for the March 8, 2014 operation.	Black Track (Support)
BAE Systems Manassas personnel (Ricardo Gonzalez)	Senior leadership at the trusted DoD facility assessed to have replaced Freescale. BAE developed the next-generation control system under the post-2014 paradigm of on-shoring the critical microelectronics supply chain.	Black Track (Support)

3.5 The "Gray Track" Unconventional Physics Cohort

This group represents a government-cultivated community of practice exploring high-risk, high-reward concepts in parallel to the main FRC program.

Name / Affiliation	Assessed Role & Contribution	Program Vector
Dr. Harold E. Puthoff (EarthTech International)	Theoretical physicist. A foundational figure in vacuum engineering and Zero-Point Energy research , providing a theoretical basis for the "gray track" cohort.	Gray Track
Charles Chase (UnLAB)	Founder of UnLAB. Leads a high-risk effort in "Fluctuation Flow Propulsion," representing a next-generation evolution beyond the FRC-based "black" track.	Gray Track
Richard Banduric (Field Propulsion Technologies)	Principal Investigator. Leads a dual-use DoD-funded effort in novel metamaterials for both propellant-less propulsion and directed energy weapons. A key network bridge and intellectual catalyst .	Gray Track
Dr. Simon Woodruff (Woodruff Scientific)	Principal Investigator. Leads a specialized plasma physics firm with deep ties to the national labs, conducting DOE-funded SBIR research directly relevant to compact torus physics for the CFR program.	Gray Track
Larry Forsley (NASA)	Lead for NASA's Lattice Confinement Fusion (LCF) program, another unconventional nuclear research track being integrated into the broader "gray" ecosystem.	Gray Track
Anna Brady-Estevez (NSF)	NSF Program Director. Assessed to be a key government manager facilitating the convergence of the "gray track" network through targeted funding and workshops.	Gray Track

3.6 The NAVAIR/Pais "White" Track Principals

These individuals were the key actors in the public-facing strategic misdirection campaign.

Name / Affiliation	Assessed Role & Contribution	Program Vector
Dr. Salvatore Pais (NAVAIR)	Aerospace engineer and inventor. The public face of the "Pais Effect" patents , which served as a sophisticated information warfare tool to misdirect foreign intelligence efforts.	White Track
Dr. James Sheehy (NAVAIR)	Chief Technology Officer, Naval Aviation Enterprise. The senior executive who compelled the approval of the Pais patents on national security grounds , executing the strategic objective.	White Track

3.7 The Epstein Talent-Spotting Network

This network is assessed to have been leveraged as a deniable intelligence platform at a key moment in the clandestine program's history.

Name / Affiliation	Assessed Role & Contribution	Program Vector
Jeffrey Epstein	Financier. The principal of a deniable network used for talent-spotting and competitive intelligence gathering , specifically via the 2006 "Confronting Gravity" workshop.	Intelligence Support
Darren K. Indyke, Richard D. Kahn	Intermediaries / Managers. The operational core of the Epstein network , professionally firewalled from any discoverable state sponsor.	Intelligence Support

Dr. Edward Thomas Jr. (Auburn University)	Experimental plasma physicist. An anomalous attendee at the 2006 workshop whose expertise in plasma instabilities directly mapped to the clandestine program's needs . A key node in the academic-to-defense talent pipeline.	Foundational (Support)
Dr. Kip Thorne, Dr. Frank Wilczek (Caltech, MIT)	Nobel laureates in theoretical physics. Provided high-level scientific legitimacy and cover for the 2006 workshop's true intelligence-gathering purpose.	Unwitting Cover

3.8 Key International Competitors

These networks in the PRC, Russia, and Israel represent parallel, state-backed efforts in the same foundational technologies, validating the strategic importance of the U.S. initiative.

Name / Affiliation	Assessed Role & Contribution	Program Vector
PRC (Chen Yunji, Qizhi Sun)	Leads state-backed effort to develop a radiation-hardened System-on-Chip (SoC) capability , a direct strategic response to the loss of the Freescale team.	Foreign Competitor
Russia (S.V. Ryzhkov, Anatoly Zhitlukhin)	Ryzhkov (Lebedev Institute) leads the foundational academic track for a "thermonuclear motor." Zhitlukhin (TRINITI) leads the applied pulsed-power development, providing a dual-use cover for inherently military technology .	Foreign Competitor
Israel (Prof. Yakov Krasik, Dr. Vladislav Vekselman)	Prof. Krasik (Technion) is the central node of Israel's pulsed power expertise. His academic descendants have created a direct human capital pipeline into the premier U.S. FRC research ecosystem .	Foreign Competitor/Ally

The analysis of this human capital network reveals a sophisticated national strategy. The use of specific individuals as vectors for transferring "tribal knowledge" while maintaining strict firewalls between program tracks is a hallmark of professional counter-intelligence tradecraft, designed to accelerate development while maximizing security. This network, in turn, relied on an ecosystem of enabling technologies and specialized suppliers.

4.0 Assessment of Peripheral Experiments and Enabling Technologies

The core FRC propulsion program depended on a broad ecosystem of supporting research, enabling hardware, and specialized industrial suppliers. The clandestine effort was not developed in a vacuum but was built upon decades of foundational work in plasma physics and leveraged a highly specialized, often dual-use, supply chain. This section analyzes these critical dependencies.

4.1 Foundational Plasma Physics and Fusion Research

The general knowledge base that enabled FRC research was built upon decades of broader plasma physics experimentation. Early devices like the ZT-40 reversed-field pinch, Q-machines, and mainstream programs in tokamaks (e.g., DIII-D) and magnetic mirrors provided the fundamental understanding of plasma behavior, diagnostics, and high-vacuum technology essential for all subsequent work.

More specifically, the development pathway for the Skunk Works® program was informed by parallel approaches in Magneto-Inertial Fusion (MIF). Sandia National Laboratories' **MagLIF** (Magnetized Liner Inertial Fusion) concept, which uses the massive Z-Machine to implode a metal liner onto a pre-magnetized fuel, explored a similar physics regime. LANL's **Plasma Liner Experiment (PLX)** investigated using merging plasma jets to form an imploding liner. These parallel efforts, while distinct from the FRC-based Magnetized Target Fusion (MTF) pathway, contributed to the collective understanding of liner implosion physics and plasma compression, de-risking the core concepts for the clandestine program.

4.2 Critical Enabling Hardware and Supply Chain

The advanced control systems required for FRC stability and the complex power systems needed for plasma formation represent critical enabling technologies. Following the 2014 loss of the Freescale team, the U.S. government undertook a strategic restructuring of the defense microelectronics industrial base, publicly championed by **DARPA's Electronics Resurgence Initiative (ERI)** and programs like POSH (Posh Open Source Hardware). This initiative created the secure, onshore industrial capacity, exemplified by the BAE Systems-Intel partnership, that was essential for developing the next-generation control system for the clandestine program.

A small, highly specialized industrial base provided the unique hardware necessary for FRC research and development.

Key Industrial Suppliers

Technology Vertical	Supplier Entity	Key Product/Capability	Strategic Significance
Pulsed Power Switches	Teledyne e2v	High-power, fast-acting Deuterium thyatrons (up to 120 kV, 20 kA) with low-jitter timing precision.	A foundational Tier 2/3 supplier. Provides the critical switches necessary for the microsecond-scale, high-current discharges required to form FRC plasmas. Known supplier to Boeing and national labs.
High-Temperature Superconductors	AMSC (American Superconductor)	Amperium® 2G HTS wire manufactured via a proprietary process licensed from Oak Ridge National Lab.	Provides the essential material for building the powerful, compact superconducting magnets required by a high-field FRC device. A trusted, sole-source provider to the U.S. Navy for naval HTS applications.
Vacuum & Particle Systems	Kimball Physics	Ultra-high vacuum (UHV) chambers, electron and ion sources.	Supplies the pristine vacuum environments and particle sources that are a prerequisite for any high-performance plasma physics experiment.

Pulsed Power & Capacitors	General Atomics Electromagnetic Systems	High energy density capacitors and integrated pulsed power modules (e.g., HEPPC).	A key U.S. developer of military-grade pulsed power systems. Expertise in designing compact, scalable modules for applications like railguns is directly analogous to the needs of a mobile fusion platform.
--------------------------------------	---	---	--

4.3 Funding and Institutional Support

The high-risk research characteristic of the "gray track" programs required a funding vehicle comfortable with speculative, deep-technology concepts. The **National Science Foundation (NSF) Small Business Innovation Research (SBIR) Program** served as a key enabler for this cohort. By providing early-stage funding to entities like Field Propulsion Technologies and UnLAB, the NSF SBIR program allowed the government to cultivate a diversified portfolio of unconventional ideas in an unclassified setting, providing a low-cost method for exploring alternative technological pathways.

This ecosystem of foundational research, specialized hardware, and targeted government funding provided the necessary tools and components for the clandestine program to succeed, culminating in the weaponization of spacetime.

5.0 Conclusion: The Deliberate Weaponization of Spacetime

The technological developments, human capital flows, and operational events detailed in this report are not a series of disconnected coincidences. They represent the coherent, multi-domain signature of a deliberate, decades-long, and interconnected U.S. national security program to achieve a generational leap in military capability through the weaponization of spacetime. This initiative has been executed with a level of strategic foresight and counter-intelligence discipline without modern parallel.

The technological lineage of this capability is now clear, tracing a direct path from the foundational Field-Reversed Configuration (FRC) research at Los Alamos National Laboratory, through the maturation of Magnetized Target Fusion concepts, and culminating in the development of a mobile, high-power-density Compact Fusion Reactor at Lockheed Martin Skunk Works®. This core "black" program was protected by a sophisticated "white" track of strategic misdirection and nurtured by an emergent "gray" track pursuing next-generation concepts.

This report reaffirms with high confidence the assessment of the MH370 event on March 8, 2014, as the first operational deployment of this new capability. The platform used in that operation was not a single technology but a synergistic integration of systems developed in parallel for a single architecture: the propellant-less maneuvering technology of Richard Banduric provided platform control, while the spacetime-curving principles of Dr. Salvatore Pais provided the primary effect. The result was a functional "spinning wormhole" weapon, a capability that transitioned from advanced theory to devastating application, its energy release mechanism having been validated in unclassified proof-of-concept experiments at LANL.

The successful creation and deployment of this new class of weapon system represents the culmination of the U.S. clandestine effort. It has provided the United States with a decisive, asymmetric advantage and fundamentally altered the future of aerospace power and strategic deterrence.

6.0 Works Cited

Armstrong, W. T., Linford, R. K., Lipson, J., Platts, D. A., & Sherwood, E. G. (1981). Field-reversed experiments (FRX) on compact toroids. *Physics of Fluids*, 24(11), 2068-2089.

Blevin, H. A., & Thonemann, P. C. (1962). Plasma Confinement using an Alternating Magnetic Field. *Nucl. Fus. Suppl. Part I*, 55.

Carlson, G. A., Condit, W. C., Devoto, R. S., Fink, J. H., Hanson, J. D., Neef, W. E., & Smith, A. C., Jr. (1978). *Conceptual Design of the Field-Reversed Mirror Reactor*. Lawrence Livermore Laboratory Report UCRL-52467.

Degnan, J. H., et al. (2001). Implosion of solid liner for compression of field reversed configuration. *IEEE Trans. Plasma Sci.*, 29, 93.

Gomez, M. R., Slutz, S. A., Sefkow, A. B., Sinars, D. B., Hahn, K. D., Hansen, S. B., ... & Vesey, R. A. (2014). Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion. *Physical Review Letters*, 113(15), 155003.

Kirkwood, R. K., Turnbull, D. P., Chapman, T., Wilks, S. C., Rosen, M. D., London, R. A., ... & Blue, B. E. (2018). Plasma-based beam combiner for very high fluence and energy. *Nature Physics*, 14(1), 80-84.

Knapp, P. F., Schmit, P. F., Hansen, S. B., Gomez, M. R., Hahn, K. D., Sinars, D. B., ... & Desjarlais, M. P. (2015). Effects of magnetization on fusion product trapping and secondary neutron spectra. *Physics of Plasmas*, 22(5), 056312.

Lieberman, M. A., & Lichtenberg, A. J. (2005). *Principles of plasma discharges and materials processing*. Wiley.

Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., & Ogawara, Y. (1994). A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. *Nature*, 371(6497), 495-497.

Matthaeus, W. H., & Lamkin, S. L. (1986). Turbulent magnetic reconnection. *Physics of Fluids*, 29(8), 2513-2534.

McKenna, K. F., & York, T. M. (1976). *Plasma End Loss Studies in Scylla I-C*. Los Alamos Scientific Laboratory report LA-6142-MS.

Rej, D. J., Armstrong, W. T., Chrien, R. E., et al. (1986). Experimental studies of field-reversed configuration translation. *Physics of Fluids*, 29(3), 852-862.

Rosenbluth, M. N., & Bussac, M. N. (1979). MHD stability of Spheromak. *Nuclear Fusion*, 19(4), 489.

Siemon, R. E., Armstrong, W. T., Barnes, D. C., et al. (1986). Review of the Los Alamos FRX-C experiment. *Fusion Technology*, 9(1), 13-28.

Slough, J. T., Hoffman, A. L., Milroy, R. D., Harding, D. G., & Steinhauer, L. C. (1984). Flux and particle life-time measurements in field-reversed configurations. *Nuclear Fusion*, 24(12), 1537.

Spitzer, L. (1962). *Physics of Fully Ionized Gases* (2nd Ed.). Interscience Pub., New York.

Spencer, R. L., Tuszewski, M., & Linford, R. K. (1983). Adiabatic compression of elongated field-reversed configurations. *Physics of Fluids*, 26(6), 1564-1568.

Steel, D. G., & Lam, J. F. (1979). Degenerate four-wave mixing in plasmas. *Optics letters*, 4(11), 363-365.

Taccetti, J. M., Intrator, T. P., Wurden, G. A., et al. (2003). FRX-L: A field-reversed configuration plasma injector for magnetized target fusion. *Review of Scientific Instruments*, 74(10), 4314-4323.

Tuszewski, M. (1988). Field Reversed Configurations. *Nuclear Fusion*, 28(11), 2033.